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Abstract

A novel approach for solving the DEA linear programming problems using a primal-
dual interior-point method is presented. The solution found by this method satisfies
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1 Introduction

Data Envelopment Analysis (DEA) is a linear programming application from the economic
and management sciences where a desired solution of the underlying linear programming
model is one satisfying the strong complementarity slackness condition (a SCSC solution).
The set of SCSC solutions can be characterized as the set of solutions where the number of
nonzero variables is maximal, therefore SCSC solutions are not vertex (or basic) solutions
unless the solutions for both the primal and dual linear programming problems are unique.
Thus, the standard simplex-type algorithms are generally not appropriate for computing
SCSC solutions.

In this work we propose a primal-dual interior-point algorithm for solving the DEA linear
programming problems. The solution found by this interior-point algorithm is not only a
SCSC solution but it is also the center-most solution in the sense that it maximizes the
product of the positive components among all the SCSC solutions (the so-called analytic
center of the solution set). These properties are crucial in the use and reliability of DEA
since among those SCSC solutions it is desirable to compute one that is in some sense as far
away as possible from the relative boundary, avoiding in this way that small changes in the
data may affect the DEA results (see Thompson, Dharmapala, and Thrall [16] ).

This paper is organized as follows. In the next section we introduce DEA and give a
formal definition of the SCSC solutions. Section 3 contains fundamental background for the
proposed algorithm. In Section 4 we present the algorithm and we study its behavior in
Section 5. Numerical results considering real world DEA problems are included in Section

6. Finally, in Section 7 we give some concluding remarks.



2 Data Envelopment Analysis (DEA)

DEA, as presented in Charnes and Cooper [2], is a technique for measuring the amount

of relative efficiencies and inefficiencies in a production system characterized by data units

called Decision Making Units (DMU).
y
Each Decision Making Unit DMU is a vector (

) € R**™ wherey € R°,z €
—z

R™,(y,z) > 0 and neither y nor z is zero.

The amounts of output » and input 7 for DMU; are represented respectively by y.; and
Tij.

A DEA Data Domain D considers a set of n decision making units DMUy, ..., DMU,

and a collection of technologies which is characterized by a data matrix P = (P...F,) =

Y
-X

A standard assumption for DEA is that no two columns of P are proportional.

e R+ with P; = DMU;, Y = (y1...yn) € R and X = (z;...z,) € R™*",

The production possibility set associated to the data matrix P is defined as

Y
K(P)= {p: ( ) € R**™ : p < P for some A > 0,A € R", and (y,m)ZO}.
—z

Yo
Let DMU, = ) denote one of the DMU's (i.e. 0 € {1,...,n} ).

Consider the linear programming problem associated to DMU,
minimize 6

Yo
subject to S = PX — ( ) >0, (1)

—0z,]
A >0,
where # € R, A € R" and S € R**™,

Problem (1) is referred to as the envelopment (or primal) program for DMU,.

This problem is the CCR ratio model introduced by Charnes, Cooper, and Rhodes (1978).



The present paper focuses attention on this DEA model although our analysis can be ex-

tended to the BCC linear model (Banker, Charnes, and Cooper (1984)).
Let (63, X%,S;) be a solution of (1). The DEA-radial-efficiency for DMU, is defined as

the optimal value 6%.

The DMU, is said to be DEA-radial-efficient if 0% = 1 and the DMU, is said to be
DEA-radial-inefficient if * < 1 . This definition is equivalent to saying that a DMU is
DEA-radial-efficient if it lies in the frontier of the production possibility set.

The definition of efficiency used in DEA is based on the idea that to remain in the pro-
duction possibility set a DMU is technical efficient if the inputs and outputs, corresponding
to that DMU, can not be respectively decreased nor increased. Therefore, a DMU, can be
a boundary point (87 = 1) and not be efficient. For this reason, a given DMU, is called

01 o

DEA-efficient if 87 = 1 and S; = 0 for all the solutions (8}, S2, A%) of problem (1).

There is an alternative dual approach to DEA-radial-efficiency for DMU, using the mul-
tiplier space W, defined as

u
W, ={w= ( ) € R**™ : hy(w) > hj(w) forall j =1,...,n,w >0 and u # 0,v # 0}.

v

Here the functions h; are output/input ratios defined as

hi(w) = uly; /v z; for j = 1,...,n,
u

v

for each w = ( ) ,u € R, v € R™,w > 0 such that vTz; > 0.
Let

Wl ={weW,:vlz, =uly, =1}
The set W is called the normalized multiplier set for DMU,,.
Observe that W* # 0 if and only if W, # 0.

Consider the linear programming problem



maximize uly,
subject to  vTz, =1
o bl

_tjzuTyj—vajszPjSO, j=1,...,n (2)

u
w= >0,
v

where v ¢ R*, v € R™ and t € R".

Problem (2) is the dual problem of (1) and it is referred to as the multiplier (or dual)
program for DMU,,.

Tt is easy to see that (w,t*) is a solution of problem (2) if and only if w* € W;". Therefore,
by duality theory, W, # 0 if and only if §; = 1. Hence, DMU, is DEA-radial-efficient if
W, # 0 and is DEA-radial- inefficient if W, = 0.

Let RE be the set of all the DEA-radial-efficient DMU; and A be the set of all the
DEA-radial-inefficients DMU;, for y = 1,...,n.

The DEA-radial-efficiency can be computed using either of the two linear programs (1)
and (2). Hence, the solutions of these problems answer the question of DEA-radial-efficiency.
However, among those DMU's that are DEA-radial-efficient (or DEA-radial-inefficient),
there are important differences depending on their multiplier sets. Thus, the set of DMU's

may be partitioned into six classes (see [3] and [4] for more detail):
E = {DMU, € RE : dim W; = s + m},
E'={DMU; € RE : dim W; < s+ m and exist w > 0,w € W;},
F = {DMU; € RE : every w € W; has at least one zero component},
NE = {DMU; e N : DMU; € E},
NE'={DMU; e N : DMU] € E'},

NF = {DMU; € N : DMU! € F}.



vi
Here DMU} = P;(6%) = !

The elements of E, E’, and FHJ:;e called, respectively, DEA-extreme efficient, DEA-non-
extreme efficient, and DEA-weak efficient. It can be seen [4] that any given DMU, is
DEA-efficient if it belongs to E U E’, or equivalently, if there exists a positive multiplier
vector w € W,.

The classification and characterization of the DMU’s play a very important role in DEA.
Charnes, Cooper, and Thrall [4] present a structure for this characterization using the linear
programming problems (1) and (2). A very interesting result from [4] is Lemma 10A which

gives a way to classify the different DMU’s, but requires the computation of a solution

(00, Ao, So, o, 1,) of problems (1) and (2) satisfying

STw, = ATt,=0
and

So 4+ w, > 0,1, + A, > 0.

These solutions are said to satisfy the strong complementarity slackness condition (or are
SCSC solutions). It is well known (see Spivey and Thrall[14] for a proof) that there always
exists a SCSC solution for any linear programming problem which is both primal and dual
feasible.

The power of the SCSC approach depends on how far w, is from the boundary of the
set W,. In order to explain this idea (see Thompson, Dharmapala, and Thrall [16] for more
details) let us consider a DMU, being DEA-extreme efficient (i.e., DMU, € E). Then, for
every SCSC solution (6,, Ao, S,, w,,,), w, is the center of an (m + s)-dimensional sphere
(hypersphere) which is a subset of W, and for every point w, in this sphere, h,(w!)) > h;(w')
for all j # o. Therefore, one has the reasonable expectation that DMU, remain DEA-

extreme efficient for relative small changes in the data. Moreover, if we define the sensitivity



function

do(w,) = ho(wo) — hi(w,), with hx(w,) = max h;(wo)

we expect the DEA results to be less sensitive to changes in the data when do(w,) is larger.
Therefore, for DEA purposes, the best choice among all the SCSC solutions is the one that
maximizes the function d,(w) over the set of dual multipliers w with (6, }, S,w,t) a SCSC
solution. Let us call this solution the DEA-center solution (8¢, A, S¢, w, t5) and df = do(w§).

The DEA-center is an useful theoretical definition for understanding the idea of centrality
that best fits the DEA requirements, however its practical use depends on the development
of an effective numerical method for computing it. In this paper we propose an algorithm
that computes a SCSC solution called the analytic center. This solution satisfies a notion of
centrality that we hope is close to the idea of centrality given by the DEA-center, however
the exact relationship between the analytic center and the DEA-center, as well as the com-
putation of the DEA-center solution, are important topics that will not be covered by this

paper and deserve further study.

3 Algorithm Background

Simplex-type methods consider the vertices of the feasibility set of the linear programming
problem and the final solution is an optimal vertex. On the other hand, interior-point
methods generate an infinite sequence of points in the interior of the feasibility set and the
algorithm stops when the iterates are sufficiently close to a solution.

There are several different classes of interior-point methods for linear programming (see
Gonzaga[7] for a survey). In this work we are interested in primal-dual interior-point al-
gorithms. We introduce in this section some theoretical background concerning these algo-
rithms as well as a discussion of the main results necessary to motivate the development of

our algorithm.



We employ the standard notation used in the literature concerning primal-dual interior-
point algorithms.

Consider the linear programming problem in the standard form:

minimize clz

(3)
subject to Az =b, z >0,
where ¢,z € R*, b € R™, A € R™*"(m < n) and A has full rank m. Associated with

problem (3) is the dual linear program

maximize by

subject to ATy+4+2z=¢, 2>0

b

where y € R™ and z € R".
Let

F = {(:c,y,z):Ax:b,ATy+z=c,(z,z) > 0}.

A point (z,y,z) € F is said to be strictly feasible if z and z are strictly positive.

It is well known that z is a solution for (3) and (y, z) is a solution for (4) if and only
if (z,y,2) € F and the duality gap ¢’z — b7y = 0, or equivalently, 7z = 0. This latter
condition is called the complementarity slackness condition.

Primal-dual interior-point algorithms attempt to solve the primal and dual linear pro-
grams simultaneously by generating a sequence of strictly feasible points (zk, Y, 2x) such
that the duality gap z7 z; converges to zero.

Observe that Tz = 0 with (z,z) > 0 if and only if x;2; = Oforalli = 1,...,n. The

optimality conditions for (3) and (4) can be written as

Az —b
F(z,y,z) = ATy+z—¢c | =0, (z,2) >0, (5)
XZe



where X = diag(z), Z = diag(z) and e = (1,1,...,1,1)T € R™.

Most primal-dual interior-point algorithms are variants of Newton’s method applied to
problem (5).

We denote the solution set of problem (5) by

S ={(z,y,2) : F(z,y,2) = 0,(z,2) 2 0}.

A point (z,y,z) in § is said to be a strict complementarity solution if z; + z; > 0 for all
1=1,...,n.

For a given DMU,, the DEA problems (1) and (2) discussed in the previous section can
be written in the standard forms (3) and (4) by defining

A= "Ime 0 0 P € R(m+s)x(m+n+a+1)’ c= 1 € Rm+"+‘9+1,b = (yo) € Rm+s.
0 —Isxs T, 0 0

S w
Therefore, = | | € R™*+1 and 2 = | 0 | € R™¥7tetl,
A t

Thus, the set of strict complementarity solutions is equal to the set of SCSC solutions.

In this work we assume the following standard conditions for (3) and (4):
(A1) {re R": Az = b,z > 0} # 0, and
(A2) {(y,z) eR™": ATy +z=1¢c,z > 0} # 0.

We are particularly concerned with the case when § is not a singleton set, i.e.,

ri(S)# 9

where ri(S) denotes the relative interior of S. In this case, both problems (3) and (4) do
not have unique solutions.
Under the previous assumptions, the solution set S has the following interesting structure:

(1) S # 0 is bounded ; (ii) all points in the relative interior are SCSC solutions (and all points

10



on the relative boundary are not); (iii) the zero-nonzero pattern of points in the relative
interior is invariant. See Zhang and Tapia [19], Charnes et al. [4] and El-Bakry et al. [5] for

proofs.

Therefore, for any (z*,y*, z*) € ri(S), the following index sets
IF={i:2f>0,1<i<n} and I} ={i:2f>0,1<i<n}
are independent of the choice of (z*,y*, 2*). Moreover, by strict complementarity
ryrr ={1,2,..,n} and XN\ =0

Because of this structure of the solution set S the solutions in ri(S) may be characterized
as those for which the number of nonzero components is maximal. Among them, there is
a solution that may be thought of as the center solution in the sense that it maximizes
the product of the positive components. This solution is called the analytic center of the
solution set and it was introduced by McLinden [11] in a general setting and independently
by Sonnevend [13] in the context of linear programming. It is interesting to mention that
Goldman and Tucker [6] introduced a concept of central solution for game theory which may
be related with the concept of analytic center for linear programming. However, the idea of
centrality defined by the analytic center is not exactly the same as the central solution of a
game as defined in [6].

Formally, the analytic center of the solution set S is defined as:

(z*,y", 2*) = argmax {¢(z, 2) : (z,9,2) € S} (6)

where

Y(z,2) = H z; H z;.

i€l delf
Equivalently, in (6) one can replace ¥(z, 2) by its logarithm, i.e.,

lny(z,z) = E Inz; + Z In z;.

el el

11



The central path of problem (5) is defined as the set

Pe = {(z(n), y(), 2(1)) is strictly feasible : X(u)Z(u)e = pe}, for p > 0.

This is equivalent to saying that a strictly feasible point (z,y, z) is on the central path if and
only if it satisfies z;2; = 2525 = ... = z,2,.

These notions of analytic center and central path are well-defined under the assumptions
(A1), (A2). For more details see McLinden [11], Megiddo [12] and Gonzaga [7).

A very interesting result from McLinden [11] is Theorem 9. In the case of linear pro-
gramming, it states that the central path intersects the solution set at the analytic center,
L.e., the central path point (z(x),y(u), z(1)) converges to the analytic center (z*,y*, z*) as
p converges to zero. See also Proposition 8.2 in Megiddo [12] and the discussion preced-
ing it. This result has played an important role in the development of most primal-dual
interior-point algorithms which attempt to follow the central path.

The interior-point algorithm proposed in this work has been designed for effectively com-

puting the analytic center of the solution set in linear programming.

4 Algorithm

The first primal-dual interior-point method for linear programming was constructed by Ko-
Jima, Mizuno and Yoshise [9], based on the work of Megiddo [12]. The following general
framework captures the essence of this algorithm and contains the majority of the primal-

dual interior-point methods that can be found in the literature.

Algorithm 4.1 (Generic Kojima-Mizuno-Yoshise primal-dual algorithm)
Given a strictly feasible point (2°,4°,2°). Fork =0,1,2,..., do

(1) Choose o* € [0,1) and set p* = o*(z*)T2* /n.

12



(2) Solve the following system for (Ax*, Ay, Az*):

Az 0
F'(a*, 4%, 2) | Ay | = =F(a%, 9%, %)+ p* | 0o
Az e

3) Choose % € (0,1) and compute the step-lé.n th of = min(1, 7%&*), where
g

k -1
"7 min((XF) A, (291 AF)

(4) Form the new iterate
(:L‘k+1,yk+l,zk+1) — (:l:k,j‘yk,zk) + ak(A:Ek,Ayk,Azk).

The algorithm proposed in this work is a modification of the Kojima, Mizuno and Yoshise
algorithm, and is similar to one presented in Gbnzaga [7].
The following lemma was proved in Zhang and Tapia [19]. Tt provides a sufficient con-

dition for a strictly feasible sequence {(z*, y*, z¥)} to converge to the analytic center of the

solution set.

Lemma 4.1 (Zhang-Tapia) Let {(z*,y* 2¥)} be a strictly feasible sequence and e =
(1,...,1)T € R*. Assume
k= (272 n — 0

and

1X*24 /¥ — ]| = o. (7)

Then {(z*,y*, 2*)} converges to the analytic center of the solution set.

Our approach to constructing an algorithm for computing the analytic center is to try to

enforce condition (7).

The proposed algorithm will utilize two key ingredients:

13



o The notion of B-neighborhoods of the central path, defined for some 8 € (0,1/4] by

NPB) ={(z,y,2): (z,9,2) € F, || Xz — pe| < Bu}, (8)

where

p=zlz/n.

o The use of a damped Newton method for solving the system

Az - b
fu(xayvz)z ATy+z—c =0)
XZe—p

with p > 0, in order to get to the central path. A line-search technique is used as a
globalization of Newton’s method. For each u > 0, the merit function considered is

defined by the function
fu :R™™ SR
with
ful@,y,2) = || Fu(z, y, 2) [ ull3.
Observe that
fu(®,y,2) = (X2 — pe)/pll3, for (z,y,2) € F.

The function f, measures closeness to the central path.

The idea of the algorithm is to consider a subsequence of gradually shrinking neighbor-
hoods {AN(B%)} of the central path with 8% — 0. The algorithm generates an iteration
sequence {(z*,y¥, 2¥)} such that a subsequence (z*i,y*, z%) belongs to N(B*%). This sub-
sequence is obtained by considering a sequence of u's and for each fixed p using a damped
Newton method (with a line search globalization strategy) to solve the system Fu(z,y,2)=0.

A description of the algorithm follows:

14



Algorithm 4.2 (Long-Step Shrinking-Neighborhood Algorithm)
Given a strictly feasible point w® = (2°,3°, 2°), 0 € (0,1) and 8° € (0,1).
Choose 1 € (0,1/2).

Do until convergence
(0) Setk=0.
(1) Define parameters: Set p = o%(z*)T2*/n and B = B*.
(2) Closeness to the central path: If
IX*Z e/p — el < B
go to (6).
(8) Compute new interate:

(3.1) Solve the following system for (AzF, Ay*, AzF):

Az 0
Fl(xk7ykazk) Ay = "—F(‘zkayk)zk) +p 0
Az e

(3.2) Choose 7" € (0,1) and compute the step-length o = min(1, 7*&*), where

e -1
© T min((XF) 1Ak, (ZF)TAF)

(3.3) Form the iterate
wk+1 — (xk+l,yk+l’zk+1) - (wk’yk’zk) + ak(A’Bk,&‘/k,Az:k).
(4) Line search:
(4:1) If fu(w™*?) < fu(wh) = (na* [2u%) FL (w*) Fu(w®) go to (5).

15
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(4.2) If not, reduce o* and form the iterate
wrt! = (mk+1’yk+1,zk+1) — (xk,yk,zk) + ak(mk,Ayk,Azk)_
(4.3) Go again to step (4.1).
(5) Setk=k+1, B¥ =P and go to (2).
(8) Set p = a°(z*)T2*/n.
(7) Do (3.1), (3.2), (3.3).
(8) Decrease neighborhood: Choose BFt1 < %,

(9) Set k=k+1 and go to (1).

5 Algorithm Behavior

In most primal-dual interior-point methods the search directions used are linear combinations
of two fundamental directions, the so-called affine scaling or pure Newton direction (direction
in which the gap is decreased) and the centering direction (direction towards the central
path). This is also the case in our algorithm.

In this section we will describe how the proposed algorithm behaves with respect to the
two objectives of decreasing the gap and centering the iterates.

The following propositions address these issues. Their proofs are straightforward (see

Gonzalez-Lima and Tapia [8] for details).

Proposition 5.1 Let {(zF,y¥, 2%)} and {a*} be generated by the Long-Step Shrinking-Neighborhood
Algorithm (Algorithm 4.2) and consider the sets

I, ={k>0: (2F y*, 2*) satisfies condition (9) in the algorithm },i.e.

16



Icp = {k >0 ”XkaC/H - 6”2 < ﬂk}aand
C (k=1 k=1 _k— . 43 ; }
I ={k21: (""", 2*7) satisfies condition (9) in the algorithm } U {0}.

For each k we denote by k%, the largest element in I} such that kY, < k and by k., the

smallest element in I, such that k < kep .

Define
=0 TL (- am(U=o™), for k¢ IyU T
m=k},
and
ok =0° forkel,u I
Then

(i) of € (0,1], for all k =0,1,..

(i) "= 1ifa* =1, fork ¢ I, U I

L oRETL < gt < < ghe <],

Proposition 5.2 Let {(z*,y*, 2%)} and {o*} be generated by the Long-Step Shrinking-Neighborhood

Algorithm (Algorithm 4.2) and let o* for all k > 0 be defined as in Proposition 5.1.
Then

(1) Forallk=0,1,..., p = o*(@*)T2*/n
(ii) (M1)T2H1 = (1 — ¥ (1 — o%))(z*)T 2>,

Therefore,

(zF)T 41 < (zF)T2*%, for all k =0,1,2,...,

If o* = 1, then (a**1)T241 = (2%)T2* (the gap does not decrease). If 0% = 0, then

(M) 251 < (2%)T 2% (mazimum possible gap decrease in that iteration).

17



Proposition 5.3 Let s* = (Az*, Ay*, Az¥) be the step direction computed by the Long-Step
Shrinking-Neighborhood Algorithm (Algorithm 4.2), with p > 0 fized, and

fulz,y,2) = (X2 — pe)/ull3-
Then

sk is a descent direction for f,(z,y,z) at (z*,y*, 2¥).

The previous propositions state that while condition (9) (closeness to the central path)
in Algorithm 4.2 is not satisfied, p will be left fixed and the dominant direction will be the
centering direction in the sense that the amount of gap decrease will be smaller at each
iteration (as a consequence of the increasing values of the centering parameters o's).

Once condition (9) is satisfied, the value of p will be decreased and the gap will decrease
by a factor close to or equal to the value of ¢°, in two contiguous iterations.

The process will continue in this way with the interesting feature that the satisfaction of
condition (9) will force the iterates to stay close to the central path when the gap is small.
Then, condition (7) from Lemma 4.1 will be satisfied for a subsequence of the iteration

sequence {(z*,y¥, 2¥)} generated by the algorithm.

6 Numerical Experience

In this section we discuss the numerical results obtained by using the Long-Step Shrinking-

Neighborhood Algorithm for DEA problems.

The experiments were performed in 64 bit arithmetic using a code implemented in
MATLAB!. The code is implemented following Lustig, Marsden and Shanno [10], so the
starting point is not necessarily feasible. The code generates a sequence of iterates that

approach feasibility and drive the gap to zero.

!Trademark of The Math Works, Inc., 21 Eliot Street South Natick, MA 01760.
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We say that a problem is solved to an accuracy of 10~™ for some positive integer m if

the algorithm is terminated when

o (12t = 8Ty 1Ak —blly [|ATYE + 2F = o]y NX"Z"-ellz) <10-™.
L+ Ty* " T4 flelle T+l + 125l oTz/n ) =

In this study all the problems were solved to an accuracy of 108 using a Sun 4/490 work-

station. The algorithm stops when the problem is solved to the given accuracy or when the

number of iterations is equal to 200.

6.1 Classification of the DMU's

There are two main objectives in this section. The first one is to show that the solution
computed by using the Long-Step Shrinking-Neighborhood Algorithm is the analytic center
solution for each of the considered problems. The second objective is to use the computed
solution and the following Lemma (Lemma 10A from [4]) in order to classify the DMU's of
each problem into the six classes E, E', F, NE, NE',NF.

Lemma 6.2 (Charnes, Cooper, Thrall) Let (0oy Ao, So) and (uo,vo,t,) be a SCSC solu-
tion of the problems (1) and (2), for a selected DMU,.
Then, DMU, belongs to

Eif0,=1,5,=0, and t,; > 0 for all j # o.

E'"iff0,=1,5,=0, and t,; =0 for some j # o.

Fife,=1,5,+#0.

NE iff 6, < 1,5, =0, and for some DMU; A, #0 and A\,; =0 for all j # k.
NE'iff 0, < 1,5, =0, and more than one Aoj 18 monzero.

NF iff8,< 1,8, #0.
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The problems considered come from Thompson, Langeimeier, C. Lee, E. Lee and Thrall
[17] and Thompson, Lee and Thrall [18].

We present a summary of the results obtained for the following problems:

(P1) Kansas Farming Problem: Problem I from [17]. This problem consists of 32 wheat
farms (32 DMU's), 4 inputs and 1 output, with normalized output.

(P2) Oil-Gas Firms Problem: Problem II (Ratio case) from [18]. This problem consists of
30 Oil-Gas Extraction firms (30 DMU’s), 4 inputs and 2 outputs.

Following the notation used in the paper, we denote by (8, A, S) and (u, v, t) solutions for
the linear programming problems (1) and (2) respectively.

As an illustration of the output obtained by using the algorithm, we show the results for
DMU,, DMUg and DMUs, from problem P1, in Tables 1, 2 and 3. By counting the number
of nonzero values it may be observed that the solutions obtained are SCSC solutions in each

problem, so any of these Tables may be directly used to classify the respective DMU's using

Lemma 6.2.

Tables 4, 7 contain the summarized information needed for Lemma 6.2 in order to classify

the different DMU's for problems P1 and P2 respectively.

Tables 5, 8 contain the dual or multiplier solutions for the DMU’s in E, for problems
P1 and P2 respectively.

Tables 6, 9 contain the nonzero values of the primal or envelopment solutions for all the

DMU’s for problems P1 and P2 respectively.

Columns 2 and 3 of Tables 4, 7 show that the solutions obtained for each of the DMU’s
are SCSC solutions.

For the Kansas Farming Problem (problem P1) we obtain:
E = {DMU;, for j = 8,9,14,15,16,31}
NE’ - {DMUgg}
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All other DMU's belong to NF.
For the Oil-gas Firms Problem (problem P2) we obtain:
E ={DMU;, for j =1,2,3,5,9,11,12,15,19,23, 24, 26, 29}

All other DMU's belong to NF.

6.2 Sensitivity Analysis

For each extreme efficient DMU, to find a SCSC solution centrally positioned in the mul-
tiplier space W, is of extreme importance in evaluating data irregularities (see Thompson,
Dharmapala, and Thrall [16] for a detailed discussion) .

The Long-Step Shrinking-Neighborhood Algorithm presented in this work was designed
for computing a SCSC solution being a center-most solution in the sense defined in sec-
tion 3. This is the first time that a centrality condition is considered for solving DEA linear
programming problems.

Thompson, Dharmapala, Diaz, and Thrall [15] studied the effect of using the solutions ob-
tained by the Long-Step Shrinking-Neighborhood Algorithm to analyze the data. They made
a multiplier sensitivity analysis to the data for the Qil-Gas Firms Problem (Problem (P2))
considering the analytic center solutions from Table 7 and the SCSC solutions calculated us-
ing the simplex algorithm repeatedly (simplex derived centers, see [4]). They observed that
the solutions obtained by using the Long-Step Shrinking-Neighborhood Algorithm improved
the stability of the sensitivity results. This study suggests that the centrality condition sat-

isfied by the analytic center solutions can be used to contribute additional robustness in the

DEA theory.
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Table 1: RESULTS FOR THE KANSAS FARM PROBLEM: DMU1

S l 8 I A l w I vTz, -1 | t
0.477352519e-11 | 0.634866211e+00 | 0.829983403e-11 0.634866211e+00 | 0.477352519e-11 | 0.365133789¢+400
0.731225593e-11 0.829983403e-11 | 0.414448000e+4-00 0.365133789¢+00
0.527656801e-03 0.133743123e-11 0.574341096¢-08 0.226594817e+01
0.304820975e-10 0.502491263e-10 0.994206469e-01 0.603104984e-01
0.119477025e-11 0.469009492¢-11 0.253651265e+-01 0.646159598e+400

0.849414685e-12 0.356780958e+4-01
0.764230363e-11 0.396549260e+4-00
0.789475664e-11 0.383868685e+-00

0.113349502e+4-00
0.419171978e-10
0.441933086e-11
0.579963577e-11
0.381167080e-11
0.926337792¢-11
0.257668182¢-10
0.110093286e+-00
0.776557212e+00
0.149825333e-11
0.500714380e-11
0.438855748e-11
0.190747980e-11
0.318297036e-11
0.191582653e-11
0.274818353e-11
0.417850005e-11
0.196422959¢-10
0.927996340e-12
0.425721304e-11
0.515330932¢-11
0.526099609e-11
0.127342959e-11
0.552632292e-11
0.821066350e-11

0.267363314e-10

0.722984839¢-01

0.685748576e+-00
0.522541409¢4-00
0.795071246e+-00
0.327153861e+400
0.117614438e+4-00
0.275271086e-10

0.390254550e-11
0.202272191e+4-01
0.605245220e+-00
0.690557174e+4-00
0.158877166e+01
0.952113750e+-00
0.158184982e+401
0.110274653e+01
0.725272183e+4-00
0.154286946e+00
0.326569160e+-01
0.711862390e+-00
0.588078390e-+00
0.576041077e+00
0.237983308e--01
0.548384504e+-00
0.369099263e-+00
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Table 2: RESULTS FOR THE KANSAS FARM PROBLEM: DMUS8

L

S

[/

A

w

vTz,—1

|

t

0.570105636D-13
0.897971989D-13
0.459608832D-13
0.132356100D-12
0.246057010D-12

0.100000000D+01

0.440773806D-13
0.753690564D-14
0.869418715D-13
0.299216371D-13
0.896999832D-14
0.330838528D-13
0.653123867D-13
0.100000000D+-01
0.853612776D-13
0.303352400D-13
0.446189993D-13
0.343073471D-13
0.337956822D-13
0.706490508D-13
0.459792663D-12
0.100228656D-12
0.940300020D-14
0.536671569D-13
0.624274326D-13
0.133021584D-13
0.341685228D-13
0.111535134D-13
0.319042607D-13
0.225900411D-13
0.798952502D-13
0.978546423D-14
0.415468840D-13
0.267488973D-13
0.281631954D-13
0.684349345D-14
0.205195777D-13
0.449115117D-13

0.100000000D+-01
0.634881314D+4-00
0.124041489D+4-01
0.430736201D 400
0.231696564D+4-00

0.570105636D-13

0.129341995D+4-01
0.756418700D+01
0.655731958D+00
0.190532902D+-01
0.635569391D+01
0.172321416D+-01
0.872890527D+-00
0.570105636D-13
0.667873833D+-00
0.187935100D+-01
0.127771946D+01
0.166175961D+01
0.168691856D+-01
0.806954417D400
0.123991895D+-00
0.568805030D+00
0.606301845D+-01
0.106229894D+01
0.913229349D+00
0.428581301D+-01
0.166851122D+01
0.511144440D+01
0.178692633D+01
0.252370341D+-01
0.713566370D+4-00
0.582604589D+-01
0.137219830D+-01
0.213132388D+01
0.202429316D4-01
0.833062296D4-01
0.277834976D+01
0.126939757D+01
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Table 3: RESULTS FOR THE KANSAS FARM PROBLEM: DMU32

S

| 6

]

w

I

T

vizo—1

t

0.285312080D-14
0.734008859D-14
0.258825573D-15
0.273494886D-13
0.125575227D-14

0.647165747D+00

0.488299879D-14
0.110589947D-14
0.156970572D-13
0.294661638D-14
0.486222149D-15
0.309173120D-14
0.696961199D-14
0.451224452D-01
0.158130335D-13
0.310002443D-14
0.421937525D-14
0.340843431D-14
0.793726566D-14
0.126394816D 400
0.235073169D+00
0.593409570D+00
0.127445765D-14
0.384180336D-14
0.362425758D-14
0.159914870D-14
0.237814921D-14
0.128104662D-14
0.166311639D-14
0.310344576D-14
0.808334773D-14
0.701951308D-15
0.348980844D-14
0.728381201D-15

0.647165747D+00
0.251565827D+00
0.713392435D+-01
0.875128551D-01

0.147038720D+-01

0.285312080D-14

0.378136907D+-00
0.166962921D+-01
0.117629823D+4-00
0.626631302D+-00
0.379752765D+-01
0.597219465D 400
0.264927525D+-00
0.409207003D-13
0.116767099D +00
0.595621777D+00
0.437610297D+00
0.541727341D+00
0.232629489D 400
0.146085268D-13
0.785475462D-14
0.311158119D-14
0.144880613D+-01
0.480618575D+00
0.509467667D+00
0.115464062D+01
0.776419767D+-00
0.144135430D 401
0.111023021D+01
0.594965145D+-00
0.228425415D+00
0.263044179D+01
0.529095534D+-00
0.253499411D4-01

0.266476701D-14 0.692909381D+00
0.108433758D-14 0.170282953D+01
0.478037926D-14 0.386254302D+00
0.523317122D-14 0.352834253D+00
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Table 4: RESULTS FOR THE KANSAS FARM PROBLEM

[DMU | 6 [minjlsj+u,l | mingltj + M1 | WS | {5:2;>0) [ cLass |
1 6.3487e-01 5.2766e-04 6.031;;-—(;; 5.2766e-04 81516 NF
2 4.5162e-01 2.3815e-02 2.1789e-02 5.4174e4-00 814 NF
3 9.6969e-01 4.3558e-03 3.0309e-02 4.3558e-03 91516 NF
4 5.3024e-01 3.4651e-01 2.3649e-02 4.1843e-01 81416 NF
5 1.5106e-01 3.4519e-03 8.4651e-03 3.4519¢-03 81516 NF
6 7.8899¢-01 2.9878e-02 4.7398e-02 1.8294e4-00 8 16 NF
7 7.7507e-01 3.3121e-02 3.7395e-02 1.9713e-01 814 NF
8 | 1.0000e+00 | 23170e-01 | 1.2399e-01 | 5.7118¢-13 8 E
9 1.0000e4-00 2.6241e-02 7.9946e-02 4.6025e-12 9 E
10 8.1561e-01 1.1183e-02 1.7065e-01 3.1344e+400 8 NF
11 6.3743e-01 7.6213e-03 3.0754e-02 4.9780e-01 814 NF
12 6.8896e-01 2.7369e-02 5.0417e-02 5.5087e-01 14 15 NF
13 9.4779¢-01 6.1937e-01 1.6970e-02 2.7653e+4-00 81416 NF
14 1.0000e+00 1.7030e-02 2.0229e-01 4.4938e-12 14 E
15 1.0000e+-00 2.8111e-02 6.0560e-01 1.2408e-12 15 E
16 1.0000e+00 2.9851e-02 7.2386e-02 4.7218e-12 16 E
17 4.2907e-01 2.2462e-02 1.8105e-01 2.7632e400 14 NF
18 6.4311e-01 3.9577e-02 4.7062e-02 8.5941e-02 14 15 NF
19 6.8578e-01 5.1246e-02 5.0184e-02 1.4179e-01 14 15 NF
20 4.3438e-01 4.0239e-02 8.9820e-03 1.1709e4-00 814 NF
21 5.0561e-01 4.9383e-02 7.3112¢-02 4.9383e-02 81415 NF
22 3.6053e-01 2.3561e-01 1.9861e-02 1.5674e+400 81416 NF
23 3.7680e-01 4.9142e-04 2.6901e-01 8.3244e-03 815 NF
24 6.0339e-01 3.9431e-01 3.3238e-02 1.5156e4-00 814 16 NF
25 8.0449e-01 8.0235e-03 5.4330e-02 8.0235e-03 81516 NF
26 2.3553e-01 3.6162e-02 1.7236e-02 1.6238¢-01 14 15 NF
27 6.8683e-01 1.1417e-02 5.0261e-02 5.8361e-01 14 15 NF
28 7.4989¢-01 3.9878e-02 3.6180e-02 7.8296e-01 8 14 NF
29 5.5820e-01 1.0230e-02 3.3534e-02 4.2322¢-01 816 NF
30 4.5968e-01 2.1411e-02 2.2178e-02 5.9699¢-+00 8 14 NF
31 1.0000e+00 9.4731e-05 9.5463e-04 1.8868e-11 31 E
32 6.4717e-01 6.7513e-02 4.5122e-02 3.9057e-14 8141516 NE’
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Table 5: RESULTS FOR THE KANSAS FARM PROBLEM

DUAL MULTIPLIERS w = (u,v) FOR THE DMU's IN E
oMmu | w1 [ w1 v2 vsi | wva

8 1.0000e+00 | 6.3488¢-01 | 1.2404e+00 | 4.3074¢-01 | 2.3170e.01

9 1.0000e400 | 3.4861¢-02 | 5.9672¢-01 | 2.6241¢-02 | 2.8584e+01

14 | 1.0000e+00 | 3.9452¢-02 | 2.0995e401 | 1.7030e-02 | 1.1569e+401

15 | 1.0000e+00 | 2.8111e-02 | 1.0086e400 | 1.0008e400 | 2.5996e+400

16 1.0000¢+00 | 4.8521¢-01 | 2.2580e400 | 2.8851e-02 | 1.4103e+01

31 1.0000e+00 | 1.9060e-01 | 4.1892¢400 | 9.4731e-05 | 2.0512e401

Table 6: RESULTS FOR THE KANSAS FARM PROBLEM
[ pMmuU | NONZERO PR{IMAL VARIABLES A

1 Ag = 1.1335e — 01 A1s = 1.1009e — 01 A1g = 7.7656e — 01 -
2 Ag = 3.3197¢ —01 | A;4 = 6.6803¢ — 01 - -
3 Ag =7.3275¢ —01 | Aqq = 1.7646e — 01 | Ayg = 9.0795e — 02 -
4 Ag =3.7650e —01 | Aj4 =2.3649¢ — 02 | Ay = 5.9985¢ — 01 -
5 Ag = 1.6781e —01 | Ajq =8.2373¢ =061 | Ayg = 8.4651e — 03 -
6 Ag = 4.0857¢ —01 | A1 = 5.9143e — 01 - -
7 Ag = 5.3739e —01 | Ayq = 4.6261e — 01 - -
8 Ag = 1.0000e + 00 - - -
9 Ag = 1.0000e + 00 - - -
10 Ag = 1.0000¢ 4 00 - - -
11 Ag = 7.0385¢ — 01 | Ayq = 2.9615e — 01 - -
12 A1q = 54344 — 01 | Ay = 4.5656e — 01 - -
13 Ag = 3.8210e —01 | Ayy = 1.6870¢ —02 | A1g = 6.0093¢ — 01 -
14 A14 = 1.0000e + 00 - - -
15 A1s = 1.0000e + 00 - - -
16 A1¢ = 1.0000e + 00 - - -
17 A14 = 1.0000e + 00 - ‘ - -
18 A14 = 2.4369¢ —01 | Ay = 7.5631e — 01 - -
19 A14 = 1.9701e ~01 | Ayp = 8.0209e — 01 - -
20 Ay =4.3438¢ —01 | Xg = 8.9820c —03 | Ayg = 9.9102¢ — 01 -
21 Ag = 2.5511e —01 | Ay = 3.5935¢ — 01 | Ayg = 3.8554c — 01 -
22 Ag = 1.0156e — 01 | Ay = 7.2329e —02 | Ajg = 8.2611e — 01 -
23 Mg = 6.1535¢ —01 | Ag5 = 3.8465e — 01 - -
24 Ag =2.9293¢ — 01 | Ay4 = 2.9882e —01 | Ayg = 4.0825¢ — 01 -
25 Ag = 5.4330e —02 | Ayg = 3.8062¢ — 01 | Aqq = 5.6505¢ — 01 -
26 A14 = 5.9808e — 01 | Aj5 = 4.0192¢ — 01 - -
27 A14 = 2.0409¢ ~ 01 | Ajg = 7.9591e — 01 - -
28 Ag = 8.870le —02 | Ayq = 9.1130e — 01 - -
29 Ap = 1.2523e —01 | Ajg = 8.7477¢ — 01 - -
30 Ag = 1.0537e —01 | Ay = 8.9463¢ — 01 - -
31 A31 = 1.0000e + 00 - - -
32 Ag = 4.5122¢ —02 | Ayy = 1.2639e —01 | Aqg = 2.3507e —01 | Ayq = 5.9341e — 01
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Table 7: RESULTS FOR THE OIL/GAS FIRMS PROBLEM

| MU | 0 | min, fs; + w;l | min;ft; + Al | st [ 4i:a>0 [cLass |
1 | 1.0000e400 | 1.1395¢-04 14141602 | 7.5891e-11 1 E
2 | 1.0000e400 | 2.1788¢-03 4.5875¢-02 | 5.4520e-13 2 E
3 | 1.0000e400 | 2.5435¢.03 3.3921-03 | 4.6569e-11 3 E
4 7.2614e-01 1.1798e-01 7.8232¢-03 1.5079e4-00 923 26 NF
5 | 1.0000e400 | 3.0406e-03 2.3723¢-01 | 2.3705e-14 5 E
6 9.4024e-01 1.4180e-03 3.9281¢-03 5.9584e4-00 919 26 NF
7 7.9612¢-01 | 4.1168¢-04 1.2080e-02 | 3.7405¢400 | 15192629 | NF
8 5.5799e-01 7.8339e-04 4.3760e-02 4.4637e-01 1119 23 26 NF
9 1.0000e+4-00 1.1820e-03 1.5607e-02 1.2403e-11 9 E
10 | 6.4746e-01 | 6.5483¢-03 2.5451e-03 | 7.1769e-02 | 15 2426 NF
11 | 1.0000¢400 | 1.7149¢-04 4.4009¢-04 | 8.2657¢-18 11 E
12 | 1.0000e4+00 | 2.4588¢-03 2.0083e-02 | 7.4641e-15 12 E
13 6.0141e-01 6.7137e-04 1.0454e-02 1.2281e+4-00 15 19 26 29 NF
14 2.6143e-01 8.7400e-03 2.7892e-03 1.0903e+4-00 126 NF
15 1.0000e4-00 1.6835e-03 2.5313e-01 5.7282e-14 15 E
16 3.9684e-01 8.6391e-03 4.2020e-03 9.4331e-01 11 19 23 26 NF
17 7.9127e-01 3.2060e-03 6.6778e-03 5.3531e-01 919 26 NF
18 | 6.1208¢-01 | 1.5648¢-02 4.7808¢-03 | 1.5648¢-02 | 2192326 | NF
19 | 1.0000e400 | 4.4342¢-02 4.6668¢-01 | 6.1287e-15 19 E
20 | 5.4550e-01 | 2.3840e-02 1.5682e-02 | 7.4206e-02 | 2192326 | NF
21 5.7068e-01 9.0396e-03 6.3437e-03 4.3583e-01 9 26 NF
22 9.1175e-01 1.3689e-02 1.1081e-02 3.0801e+-00 15 26 29 NF
23 1.0000e+4-00 2.7210e-02 1.0000e4-00 1.0015e-15 23 E
24 1.0000e+-00 2.6999%¢-05 5.3297e-03 4.0545e-14 24 E
25 8.5307e-01 1.6499¢-03 4.9890e-03 3.3016e+00 2192326 NF
26 1.0000e+4-00 1.6248e-03 3.2859e-02 1.7429-14 26 E
27 | 4.6902¢-01 | 1.8874-02 1.1944e-02 | 1.8138¢400 | 15 26 29 NF
28 5.3820e-01 3.8300e-03 8.3330e-03 9.1593e-02 1119 23 26 NF
29 1.0000e+-00 1.1265e-03 2.6538e-02 1.4605e-14 29 E
30 6.7486e-01 4.4651e-03 4.4619e-03 4.7914e-01 15 26 29 NF
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Table 8: RESULTS FOR THE OIL/GAS FIRMS PROBLEM

DUAL MULTIPLIERS w = (u,v) FOR THE DMU's IN E
DMU U1 U2 Vi v2 v3 \£]
1 1.0053e-01 7.5247e-02 1.1407-02 8.4621e-02 1.1395e-04 5.8077e-02
2 5.2761e-01 3.5953e-01 1.6787e-02 1.3186e+400 2.1788e-03 7.0068e-02
3 2.1734e400 3.7393¢-02 3.3891e-03 2.9802¢-01 3.3934e-02 2.5435e-03
4 1.2225e¢+400 2.6358e-01 4.7415¢-03 3.0408¢-03 3.7762¢.03 8.3022e-01
5 9.8530e+400 7.1545e-02 2.0850e-02 1.9476e+400 7.9175e-02 1.1820e-03
6 7.6593e+400 1.7115e+400 6.4374e-01 1.1002e+00 2.4027e-01 1.7148e-04
7 2.6326e400 2.4588e-03 2.5770e-03 7.0159¢-03 3.8157¢-02 2.7267e-01
8 3.8882¢400 3.1194¢-01 7.4720e-03 2.7055e-02 9.6971e-01 1.6835¢-03
9 7.7356e+400 2.5336e+00 4.4342¢-02 3.2403e+400 1.5156e-01 1.0898e400
10 6.9897e+01 8.9983e+00 3.7751e-01 2.8099e402 5.8142e-02 2.7210e-02
1n 3.1337e-01 5.5737e-04 3.5389¢-03 4.1623¢-04 2.6999e-05 7.3642¢-02
12 7.6442e-01 2.8138e-02 1.7083e-01 1.0578e-02 1.6248¢-03 3.4998¢-02
13 1.1507e+01 2.5467¢-01 4.5919e-02 1.1265¢-03 1.1704e+400 9.3267¢-02

Table 9: RESULTS FOR THE OIL/GAS FIRMS PROBLEM

I DMU l NONZERO PRIMAL VARIABLES A
1 A1 = 1.0000e + 00 - - -
2 Ag = 1.0000e + 00 - - -~
3 Az = 1.0000e + 00 - - -
4 Ag = 7.8232¢ —- 03 Az3 = 2.6942e + 00 Age = 2.6125e — 02 -
5 A5 = 1.0000e + 00 - - -
6 Ag = 5.4611e — 01 | Ajg = 4.8105¢ — 01 Agg = 1.1783e — 01 -
7 Ajg = 8.9817e — 02 A1g = 1.1871e 4 00 A2¢ = 1.4027e ~ 01 Apg = 2.5732e — 02
8 A1 =1.6993e — 01 | A;g = 1.0968¢ + 00 A23 = 8.3803¢ — 01 Agg = 4.7418¢ — 02
9 Ag = 1.0000e + 00 - - -
10 Aj = 2.5451e — 03 Ag = 1.1024e — 01 A24 = 5.1342¢ — 03 Age = 2.4428e — 02
1 Ai1 = 1.0000¢ + 00 - - -
12 A12 = 1.0000e 4 00 - - -
13 A5 = 5.622Te ~ 02 | 39 = 7.9042¢ —~ 01 Agg = 5.1826¢ — 02 Agg = 1.0454¢ — 02
14 Ay = 2.7892e — 03 Agg = 1.8558e — 02 - -
15 A1 = 1.0000e + 00 - - -
16 A11 = 1.9063e — 02 A19 = 4.6213e ~ 02 Ag3 = 3.0811e —~ 02 Age = 4.2020e — 03
17 Ag = 9.4548e — 03 A1g = 1.8473e¢ ~ 01 Agg = 6.6778e — 03 -
18 Ag = 4.7808e —03 | Agg = 8.0622¢ — 02 Ag3 = 2.0079¢ — 01 A = 0.2983e — 03
19 Aig = 1.0000e + 00 - - -
20 Ag = 1.2193e — 01 | Agg = 1.7270e — 01 Aga = 5.1396¢ — 01 Agg = 1.5682e — 02
21 Ag = 1.4964¢ — 01 Agg = 6.3437¢ — 03 - -
22 A15 = 4.0172e —02 | Agg = 1.1081e —02 | Apg = 1.7340e — 0223 | Ay3 = 1.0000e + 00
24 Agq = 1.0000e 4 00 - - -
25 Ag = 1.3020e + 00 | Ayg = 9.4998¢ + 00 Az3 = 2.3073¢ 4 01 Agg = 5.5866e — 01
26 Ag¢ = 1.0000e + 00 - - -
27 A5 = 2.3529e ~ 02 Agg = 1.1944e — 02 Agg = 4.8987¢ — 02 -
28 A1l = 3.6102e — 02 Ajg = 6.6127e — 02 A3 = 7.3328e¢ — 01 App = 8.3330e — 03
29 Agg = 1.0000e + 00 - _ _
30 Al = 4.4931e — 02 | Ayg = 1.0155¢ — 02 Agg = 4.4619¢ — 03 -
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7 Concluding Remarks

In this paper a primal-dual interior-point algorithm for solving the DEA linear programming
problems was proposed. The algorithm is a modification of the Kojima-Mizuno-Yoshise
primal-dual algorithm. The sequence of iterates generated by the algorithm converges to the
solution set while approaching the central path; hence the computed solution is the analytic
center of the solution set. The approach to the central path is done in such a way that long
steps can be taken when the gap is not small, but close to the solution set only small steps
are allowed because of the use of gradually shrinking neighborhoods of the central path.

Numerical results were presented for some real world DEA problems in order to illustrate
the performance of the algorithm. The solution computed by the algorithm can be effectively
used for the classification of the DMU’s for DEA problems.

The effective use of the LemmalOA from [4] for classifying the DMU’s strongly depends
on the computation of a SCSC solution being far of the relative boundary of the solution set,
in the sense introduced in Section 2. Since the solution computed by the algorithm proposed
in the present work is a center-most solution in the sense that it maximizes the product of
the positive components among all the SCSC solutions, it seems to be a good choice for the
DEA purposes, although it may not be the best solution choice. To our knowledge, this is
the first time that a centrality requirement is considered for finding solutions of the DEA
linear programming problems. Further research is needed to understand the relationship
between the solution here obtained and the DEA-center solution introduced in Section 2,
as well as the relationship between the optimal value d¢ and d* = d,(w+) with w+ the dual

multiplier of the analytic center solution and d, the sensitivity function also introduced in

Section 2.
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